

Please solve the following exercises and submit **BEFORE 5:00 pm of** Wednesday 21st of October. Submit on Moodle.

Exercise 1

(10 points)

Let A, B, and C be sets. Show that:

- a) $(A \cup B) \subseteq (A \cup B \cup C)$ $\{x | x \in (A \cup B)\}$ (Assumption) $=> \{x | x \in A \lor x \in B\}$ $=> \{x | x \in A \lor x \in B \lor x \in C\}$ (Addition) $=> \{x | x \in (A \cup B \cup C)\}$
- b) $(A \cap B \cap C) \subseteq (A \cap B)$ $\{x | x \in (A \cap B \cap C)\}$ (Assumption) $=> \{x | x \in A \land x \in B \land x \in C\}$ (Definition of intersection) $=> \{x | x \in A \land x \in B\}$ (Simplification) $=> \{x | x \in (A \cap B)\}$
- c) $(A-B)-C \subseteq A-C$ $\{x|x\epsilon(A - B) - C\}$ (Assumption) $=> \{x|x\epsilon A \land x \notin B \land x \notin C\}$ (Definition of difference) $=> \{x|x\epsilon A \land x \notin C\}$ (Simplification) $=> \{x|x\epsilon (A - C)\}$
- d) $(A-C)\cap(C-B) = \emptyset$ $(A \cap C) \cap (B - C)$ $= (A \cap C) \cap (B \cap \overline{C})$ $= (A \cap B) \cap (C \cap \overline{C})$ $= (A \cap B) \cap \phi$ (Complement law) $= \phi$ (Domination law)
- e) $(B-A)\cup(C-A) = (B\cup C)-A$ $\{x|x\in(B-A)\lor x\in (C-A)\}$ (Assumption) $=> \{x|(x\in B \land x \notin A)\lor (x\in C \land x \notin A)\}$ (Definition of difference) $=> \{x|x\notin A\land (x\in B\lor x\in C)\}$ anti – Distribution $=> \{x|x\in(B\cup C) - A\}$ (Definition of difference)

Exercise 2

(10 points)

Draw the Venn diagrams for each of these combinations of the sets A, B, and C.

a) (A ∪ (B - C)) ∩ D
b) (A-B)∪(A-C)∪(B-C)

Exercise 3

(10 points)

Can you conclude that A = B if A, B, and C are sets such that

- a) A∪C = B∪C? No, Counter example: Let A={1,2,3,4,5}, B={1,2,3,4}, C={5} AUC = {1,2,3,4,5} BUC = {1,2,3,4,5} We get, AUC=BUC but A does not equal B.
- b) $A \cap C = B \cap C$? No, Counter example: Let $A = \{1,2,3\}$ $B = \{1,2\}$ $C = \{1\}$ $A \cap C = \{1\} = B \cap C$ but A does not equal B.
 - c) A-C = B-C and C-A = B-A? No, Let A= {1,2,3}, B={1,4,3,6}, C={2,4,6} A-C=B-C= {1,3} C-A={4,6}= B-A But A and B are not equal.

Exercise 4

(10 points)

Find the domain and range of these functions. Note that in each case in order to find the domain, determine the set of elements assigned values by the function.

- a) The function that assigns to each nonnegative integer its first digit
- b) The function that assigns to a bit string the number of one bits in the string
- c) The function that assigns to each non-negative integer its 3rd power and returns the last digit
- d) The function that raises 2 to the non-negative integer assigned to the function

Exercise 5

(10 points)

Give an example of a function from **Z** to **N** that is

- a) one-to-one but not onto. $F(x) = x^2$
- b) onto but not one-to-one $F(x) = \lfloor |x|/3 \rfloor$
- c) both onto and one-to-one (but different from the identity function)

$$F(x) = \begin{cases} 2(x-1) & \text{if } x > 0 \\ -2x+1 & \text{if } x < 0 \\ x & \text{if } x = 0 \end{cases}$$

d) neither one-to-one nor onto. F(x) = |x|+1

Exercise 6

(10 points)

Determine whether each of these functions is a bijection from **R** to **R**.

- a) f(x) = -3x+1
- b) $f(x) = -3x^2 7$
- c) f(x) = (x+1)/(x-2)
- d) $f(x) = x^3 + 1$

Exercise 7

(10 points)

Let $f(x) = ax^2 + bx + c$ and g(x) = 2dx + e, where a, b, c, d and e are constants. Determine necessary and sufficient conditions on the constants a, b, c, d and e so that $f \circ g = g \circ f$.

 $f(g(x)) = a(2dx + e)^{2} + b(2dx + e) + c$ = 4ad²x² + 4adex + ae² + 2bdx + be + c = (4ad²)x² + (4ade + 2bd)x + ae² + be + c

 $g(f(x)) = 2d(ax^2 + bx + c) + e$ = $(2ad)x^2 + (2bd)x + 2dc + e$

So it is the following conditions are necessary: $4ad^2 = 2ad$ $\Rightarrow 2d = 1$

 \rightarrow d = $\frac{1}{2}$

$$2bd = 4ade + 2bd$$

$$\Rightarrow 4ade = 0,$$

$$\Rightarrow a = 0 \text{ or } e = 0$$

 $ae^{2} + be + c = 2dc + e$ $\Rightarrow ae^{2} + be + c = 2(\frac{1}{2})c + e$ $\Rightarrow ae^{2} + be = e$ $\Rightarrow e(ae + b) = e$ $\Rightarrow ae + b = 1; ae = 0 \text{ since } a = 0 \text{ or } e = 0$ $\Rightarrow \text{then } b = 1$

Exercise 8

(10 points)

Let f be a function from A to B. Let S and T be subsets of B. Show that: Let Q and R be 2 subsets in A such that $f(Q) \rightarrow S$ and $f(R) \rightarrow T$ $f^{-1}(S) \rightarrow Q$ and $f^{-1}(T) \rightarrow R$

a) $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$ Assme we have x such that $x \in f^{-1}(S \cup T)$ $=> x = f^{-1}(0)$ for some $0 \in (S \cup T)$ $=> 0 \in S \lor 0 \in T$ $==> f^{-1}(0) \in Q \lor f^{-1}(0) \in R$ $==> x \in Q \lor \in R$ $==> x \in (Q \cup R)$

Assme we have x such that $x \in (f^{-1}(S) \cup f^{-1}(T))$ ==> $x \in (Q \cup R)$ Then they are equivalent

b)
$$f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$$

Exercise 9

(10 points)

Prove or disprove each of these statements about the floor and ceiling functions.

- a) [[x]]=[x] for all real numbers x.
- b) [x+y]=[x]+[y] for all real numbers x and y.
- c) [[x/3]/2] = [x/6] all real numbers x.

- d) $\lfloor \sqrt{\lceil x \rceil} \rfloor = \lfloor \sqrt{x} \rfloor$ for all positive real numbers x.
- e) $[x]+[2y]+[2x+y] \le [3x]+[3y]$ for all real numbers x and y.

Exercise 10

(10 points)

Fuzzy sets are used in artificial intelligence. Each element in the universal set U has a **degree of membership**, which is a real number between 0 and 1 (including 0 and 1), in a fuzzy set S. The fuzzy set S is denoted by listing the elements with their degrees of membership (elements with 0 degree of membership are not listed).

For instance, we write {0.6 Alice, 0.9 Brian, 0.4 Fred, 0.1 Oscar, 0.5 Rita} for the set F (of famous people) to indicate that Alice has a 0.6 degree of membership in F, Brian has a 0.9 degree of membership in F, Fred has a 0.4 degree of membership in F, Oscar has a 0.1 degree of membership in F, and Rita has a 0.5 degree of membership in F (so that Brian is the most famous and Oscar is the least famous of these people). Also suppose that R is the set of rich people with $R = \{0.4 \text{ Alice}, 0.8 \text{ Brian}, 0.2 \text{ Fred}, 0.9 \text{ Oscar}, 0.7 \text{ Rita}\}.$

a) The **complement** of a fuzzy set S is the set S, with the degree of the membership of an element in S equal to 1 minus the degree of membership of this element in S.

Find F (the fuzzy set of people who are not famous) and R (the fuzzy set of people who are not rich).

- b) The union of two fuzzy sets S and T is the fuzzy set S ∪ T, where the degree of membership of an element in S ∪ T is the maximum of the degrees of membership of this element in S and in T.
 Find the fuzzy set F ∪ R of rich or famous people.
- c) The **intersection** of two fuzzy sets S and T is the fuzzy set $S \cap T$, where the degree of membership of an element in $S \cap T$ is the minimum of the degrees of membership of this element in S and in T. Find the fuzzy set $F \cap R$ of rich and famous people.